A New 2D Metal-Organic Framework for Photocatalytic Degradation of Organic Dyes in Water

نویسندگان

چکیده

Two-dimensional (2D) metal-organic frameworks (MOFs) are fascinating photocatalytic materials because of their unique physical and catalytic properties. Herein, we report a new (E)-4-(3-carboxyacrylamido) benzoic acid [ABA–MA] ligand synthesized under facile conditions. This ABA–MA is further utilized to synthesize copper-based 2D MOF via the solvothermal process. The resulting characterized for morphology electronic structural analysis using advanced techniques, such as proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, ultraviolet-visible scanning electron microscopy. Furthermore, employed photocatalyst degrading organic dyes, demonstrating degradation/reduction methylene blue (MeBl) dye with excellent catalytic/photodegradation activity in absence any photosensitizer or cocatalyst. apparent rate constant (kap) values MeBl on Cu(II)–[ABA-MA] reported be 0.0093 min−1, 0.0187 0.2539 min−1 different conditions sunlight NaBH4. kinetics stability evaluations reveal noteworthy potential Cu(II)–[ABA–MA] wastewater treatment. work offers insights into fabrication MOFs highly versatile applications.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photocatalytic Degradation of Organic Pollutants in Water

A photocatalyst is defined as a substance which is activated by adsorbing a photon and is capable of accelerating a reaction without being consumed [1]. These substances are invaria‐ bly semiconductors. Semiconducting oxide photocatalysts have been increasingly focused in recent years due to their potential applications in solar energy conversion and environmen‐ tal purification. Semiconductor ...

متن کامل

Synthesis of magnetic metal-organic framework (MOF) for efficient removal of organic dyes from water

A novel, simple and efficient strategy for fabricating a magnetic metal-organic framework (MOF) as sorbent to remove organic compounds from simulated water samples is presented and tested for removal of methylene blue (MB) as an example. The novel adsorbents combine advantages of MOFs and magnetic nanoparticles and possess large capacity, low cost, rapid removal and easy separation of the solid...

متن کامل

γ-CD-Functionalized TiO2 Nanoparticles For the Photocatalytic Degradation of Organic Dyes

In this work, an efficient photocatalyst based on gamma-cyclodextrin-modified titanium dioxide nanoparticles (TiO2/γ-CD NPs) was synthesized and used for photocatalytic degradation of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB). The results of FESEM, EDX, TEM, FT-IR, XRD and BET surface area measurement showed that the TiO2 NPs were effectively modifi...

متن کامل

Photocatalytic degradation of some organic dyes under solar light irradiation using TiO2 and ZnO nanoparticles

Nanoparticles of the ZnO and TiO2 were synthesized and the physicochemical properties of the compounds were characterized by IR, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns of the ZnO and TiO2 nanoparticles could be indexed to hexagonal and rutile phase, respectively. Aggregated nanoparticles of Z...

متن کامل

Metal–Organic Frameworks and Their Derivatives for Photocatalytic Water Splitting

Amongst many strategies for renewable energy conversion, light-driven water splitting to produce clean H2 represents a promising approach and has attracted increasing attention in recent years. Owing to the multi-electron/multi-proton transfer nature of water splitting, low-cost and competent catalysts are needed. Along the rapid development of metal–organic frameworks (MOFs) during the last tw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Catalysts

سال: 2023

ISSN: ['2073-4344']

DOI: https://doi.org/10.3390/catal13020231